Considering data options
I’m thinking about the best approach for this request. I could ask what data format they have, like a CSV of standings per round, or we could write a script that converts input into a line chart. The script would expect columns like Round, Team, Rank. Alternatively, if we're allowed, we could attempt to scrape it from the web, but that might need approvals. I should clarify whether they have data or a link, then offer those two options.Developing a plotting script

I’m considering providing a script using Matplotlib or Seaborn to read a standings CSV. The CSV would have columns for round, team, and rank. I want to handle a reversed y-axis, showing rank 1 at the top, and maybe include team color mapping with labels at the last point. I could create a script called plot_csl_rankings.py that takes parameters for input file, teams, and top N options. Since they're using the Codex CLI, I can write a file in their workspace.Clarifying file creation

I’m thinking about how to create files using the shell. The instructions don't specify how to write files, but the CLI generally allows modifications through shell commands or possibly using 'apply_patch.' In past tasks, we utilized a patch tool, although that isn't mentioned here. I need to decide whether to ask if they want code or to provide a code snippet directly and request the data. To keep things simple, I should just ask: "Do you have the per-round standings data?" If yes, they can attach a CSV file.Generating chart options

I’m thinking about how to proceed with this task. If the user doesn’t have the data, I can offer to fetch it automatically and generate the chart, but I should remind them that internet access is required for that. I definitely need to ask for confirmation about team names. Meanwhile, I can prepare a ready-to-run script for them to use. I’ll propose a CSV format that includes columns like round, team, and rank, allowing for optional filters. The script will plot lines, invert the y-axis, and may include annotations for clarity.
要画“2025 中超联赛各队排名折线图”,我需要每轮排名的数据。你有每轮的球队名与排名吗?如果有,给我一个 CSV 或数据源链接,我直接帮你生成图。没有数据也行,我可以写脚本,等你把 CSV 放进去就能出图。
下面给一份通用脚本,读取每轮排名并输出折线图(名次从上到下 1→N),支持筛选球队或只画最终前 N 名。
使用说明
代码(保存为 plot_csl_rankings.py)
#!/usr/bin/env python3
import argparse
import sys
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import cycler
# Try to show Chinese labels if fonts available
plt.rcParams["font.sans-serif"] = ["SimHei", "Noto Sans CJK SC", "Microsoft YaHei", "Arial"]
plt.rcParams["axes.unicode_minus"] = False
plt.style.use("seaborn-v0_8-whitegrid")
def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
mapping = {}
for c in df.columns:
lc = str(c).strip().lower()
if lc in ["round", "轮次", "r", "round_no", "matchday"]:
mapping[c] = "round"
elif lc in ["team", "球队", "club", "俱乐部"]:
mapping[c] = "team"
elif lc in ["rank", "名次", "position", "pos"]:
mapping[c] = "rank"
elif lc in ["season", "赛季", "year"]:
mapping[c] = "season"
else:
mapping[c] = lc # keep as-is for potential future use
df = df.rename(columns=mapping)
required = {"round", "team", "rank"}
if not required.issubset(df.columns):
missing = required - set(df.columns)
raise ValueError(f"Missing required columns: {missing}. "
f"Have columns: {list(df.columns)}")
return df
def pick_teams(df: pd.DataFrame, teams_arg: str | None, top: int | None) -> list[str]:
all_teams = sorted(df["team"].unique())
if teams_arg:
wanted = [t.strip() for t in teams_arg.split(",") if t.strip()]
# keep order as provided, validate existence
missing = [t for t in wanted if t not in all_teams]
if missing:
raise ValueError(f"Teams not found in data: {missing}. Available: {all_teams}")
return wanted
if top:
# determine final round, then pick top N by the final round rank
last_round = int(df["round"].max())
last_table = df[df["round"] == last_round].sort_values("rank")
return last_table["team"].head(top).tolist()
return all_teams
def main():
ap = argparse.ArgumentParser(description="Plot CSL 2025 ranking trajectory by round.")
ap.add_argument("--input", required=True, help="CSV with columns: round, team, rank")
ap.add_argument("--output", default="csl_rankings_2025.png", help="Output image path (png/svg)")
ap.add_argument("--teams", default=None, help="Comma-separated team names to include")
ap.add_argument("--top", type=int, default=None, help="Only plot top N teams (by final round)")
ap.add_argument("--title", default="2025中超联赛排名走势", help="Chart title")
ap.add_argument("--width", type=float, default=12.0, help="Figure width inches")
ap.add_argument("--height", type=float, default=7.0, help="Figure height inches")
args = ap.parse_args()
csv_path = Path(args.input)
if not csv_path.exists():
print(f"Input not found: {csv_path}", file=sys.stderr)
sys.exit(1)
df = pd.read_csv(csv_path)
df = normalize_columns(df)
# Coerce types
df["round"] = pd.to_numeric(df["round"], errors="coerce")
df["rank"] = pd.to_numeric(df["rank"], errors="coerce")
df = df.dropna(subset=["round", "team", "rank"])
df["round"] = df["round"].astype(int)
df["rank"] = df["rank"].astype(int)
# Sort and basic sanity
df = df.sort_values(["round", "rank", "team"])
rounds = sorted(df["round"].unique())
if len(rounds) == 0:
raise SystemExit("No rounds found in data.")
max_round = rounds[-1]
max_rank = int(df["rank"].max())
teams = pick_teams(df, args.teams, args.top)
# Pivot to have rounds as index, teams as columns
pivot = df.pivot_table(index="round", columns="team", values="rank", aggfunc="min")
# Ensure all rounds exist as index
idx = pd.Index(range(int(min(rounds)), int(max_round) + 1), name="round")
pivot = pivot.reindex(idx)
# Figure
fig, ax = plt.subplots(figsize=(args.width, args.height))
# Color cycle
colors = plt.cm.tab20.colors + plt.cm.tab20b.colors + plt.cm.tab20c.colors
ax.set_prop_cycle(cycler(color=colors))
# Plot each selected team
plotted = []
for team in teams:
if team not in pivot.columns:
continue
y = pivot[team]
# If there are missing ranks for some rounds, leave gaps
ax.plot(pivot.index, y, marker="o", linewidth=2, markersize=3, label=team)
plotted.append(team)
if not plotted:
raise SystemExit("No selected teams were found in the data to plot.")
# Rank axis: 1 at top
ax.invert_yaxis()
ax.set_ylim(max_rank + 0.5, 0.5)
ax.set_yticks(range(1, max_rank + 1))
ax.set_xticks(pivot.index)
ax.set_xlabel("轮次")
ax.set_ylabel("排名")
ax.set_title(args.title)
# Move team labels to the right of last round
x_right = max_round + 0.5
for line, team in zip(ax.get_lines(), plotted):
y_last = line.get_ydata()[-1]
if pd.isna(y_last):
# find last valid
valid = pd.Series(line.get_ydata()).dropna()
if not valid.empty:
y_last = valid.iloc[-1]
else:
continue
ax.text(x_right, y_last, team, va="center", fontsize=9)
# Expand x limit to make space for labels
ax.set_xlim(pivot.index.min() - 0.2, max_round + 2.0)
# Tidy
ax.grid(True, axis="both", linestyle="--", alpha=0.3)
for spine in ["top", "right"]:
ax.spines[spine].set_visible(False)
# Legend optional (can be crowded). Comment out if using right-side labels.
# ax.legend(ncol=2, fontsize=8)
fig.tight_layout()
out_path = Path(args.output)
fig.savefig(out_path, dpi=200)
print(f"Saved: {out_path.resolve()}")
if __name__ == "__main__":
main()
如果你把一个示例 CSV(含每轮排名)发给我,我可以直接跑脚本并把成品图发给你。或者如果你没有数据,我可以尝试自动抓取 2025 赛季每轮积分榜并生成图,要不要我来抓取并出图?